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Abstract. The ability to emulate isolated code parts in binary low-level
system code such as an operating system’s kernel is often both necessary
and beneficial from the security analysis point of view, as it significantly
reduces the search space to more interesting parts, and also because com-
plete kernel images are very difficult or often impossible to emulate as
a whole using existing emulators. In this paper, we consider this prob-
lem of emulating isolated code compartments for Android binary kernel
images.
To this end, we present a framework that allows emulation of device
drivers directly from binary Android kernel images by “borrowing” em-
ulated execution context from a running stock Linux kernel. It works by
injecting the Android kernel under test into the same memory space as
the stock Linux kernel, logically unlinking specific isolated parts from its
original kernel, and reattaching them to the stock Linux kernel.
We evaluate the correctness of our approach on a set of 56 drivers from
10 different kernels, for which it was successful in borrowing the exe-
cution context in all cases. By further extending it with coverage-based
fuzzing, we fuzzed a set of 23 IOCTL drivers and discovered 4 zero-day
vulnerabilities (some high-severity) which were confirmed by Google’s
security team.
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1 Introduction

Dynamic analysis is one of the proven and effective methods for finding security
bugs. Moreover, it achieves its full potential in an emulated environment: em-
ulation allows for a fine-grained control of the execution through internal state
introspection, which, in turn, enables a number of useful types of instrumenta-
tion without the need to purchase physical copies of the device.

When it comes to dynamic analysis of binary low-level system code, such
as an operating system’s kernel (or firmware), one of the common tasks is to
emulate and analyze only specific isolated parts rather the whole system. There
are two reasons for this. First, it is more effective from a security analysis point
of view to focus on specific bug-prone parts, e.g., network packet parsing code in



a network driver, or a system call handler, as it significantly reduces the search
space in otherwise large system. Second, emulating a complete operating system
kernel can be problematic or impossible due to the absence of a large number of
emulated versions of the hardware that the low-level system code would require
to boot and operate. In fact, one of the more popular emulators, Qemu [1], can
properly boot kernels compiled for only a handful of hardware boards1. This
makes, in many cases, focusing on isolated code compartments the only possible
solution in terms of the amount of the hardware whose emulated versions need
to be added.

Unfortunately, isolating and emulating code starting from an arbitrary loca-
tion without booting the kernel first is far from obvious. This is usually hindered
by missing execution context, i.e., various kernel structures and subsystems that
would otherwise be initialized during the normal boot process. Without a valid
execution context, the portion of the code that we try to emulate will most
likely result in undefined behavior. This usually manifests as memory access vi-
olation errors when it tries to interact with uninitialized kernel memory. In this
paper, we approach this problem of emulating isolated code parts for binary An-
droid kernels images and we focus on device drivers added by the manufacturers,
which usually are much less audited compared to the core kernel subsystems and
historically have been a source of many vulnerabilities.

More specifically, when the execution moves to a logically separate code com-
partment (i.e., a driver), which is a part of a larger system (i.e., the kernel), it is
expected that registers and memory at specific address ranges are initialized (i.e.,
are set to particular values). It is also expected that specific kernel functions,
which are not part of the driver itself, are present at specific memory addresses. If
such expected/valid execution context is present, the emulation will correspond
to an execution run on a real device, and it becomes possible to reason about
the device’s security properties. If, on the other hand, the execution context is
set arbitrarily, then with overwhelming probability, the emulation will not corre-
spond to an actual device behavior. Without being able to emulate the original
Android kernel, getting a precise and valid execution context is non-trivial, and
the space of all possible values is too large for exhaustive search.

Our key observation is that the execution context of the stock Linux kernel
configuration (that can be emulated) might be close enough to the execution
context expected by individual parts of Android kernels (e.g., device drivers).
Our main idea is to load the Android kernel alongside the already booted (in
an emulator) stock Linux kernel, and then redirect the execution to the driver
for the analysis. More precisely, we run the stock Linux kernel and then inject
the Android kernel’s binary into the same memory space. In this way, the two
kernels “live” alongside each other, but only the stock kernel is in charge of
running the system, i.e., interacting with emulated peripherals and maintaining
all the kernel structures required for proper operation. We connect the injected
Android kernel to the running stock kernel by redirecting calls to standard kernel

1 While some of the peripherals, such as camera, or IR sensor, might indeed not be
needed, in general, there is always a number of hardware components that are critical
and are required during the boot process.
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functions (such as printk) and control data structures to the corresponding
versions in the stock kernel. Once the kernels are connected, we finally identify
the initialization functions of the driver and move the execution there.

A different approach for a related problem was proposed in [11] in which
the authors suggested a way to insert drivers originally developed for custom
Android kernels into the stock Linux kernel, thus enabling emulation of these
drivers. While similar in spirit, that approach has two fundamental limitations
which we also try to solve in the current work. First, the approach in [11] is
limited to device drivers only, while we consider an approach that, in principle,
can be used to direct execution to any part/subsystem of an Android kernel.
Second, and most importantly, the system presented in [11] requires drivers to be
recompiled from the source code. At the same time, kernel images are shipped to
end users in binary form (including initial release and system updates). Because
of this, there is no guarantee that, in general, the OEM’s published source code2

exactly matches the binary running on the devices; moreover, some bugfixes can
be included only into the distributed kernel binaries. In addition, the source
code for some drivers might simply not be available. Working on binary kernel
images (e.g., extracted from system updates) does not have the aforementioned
limitations.

We implemented our approach as the LiLi framework (as in Linux in Linux).
To evaluate LiLi, we used drivers from ten different Android kernels, from four
vendors (Lineage3, Huawei, HTC, and Samsung). We used 56 unique drivers to
test LiLi’s correctness in transferring Linux execution context. LiLi was success-
ful in all cases. We then further extended our framework with coverage-based
fuzzing and tested it on a set of 23 drivers. We ultimately discovered four zero-
day vulnerabilities in Google smart TV kernels while obtaining only a handful
of false positives. All discovered vulnerabilities were confirmed by Google’s An-
droid Security Team, and two of them were assigned a severity rating of “High”,
while another received a “Moderate” rating. Moreover, one of the high-severity
vulnerabilities was discovered in one of the core Android subsystems, ION, which
potentially affects a much broader set of Android devices. We received a total
of 6,000 USD as bounties for reporting the vulnerabilities.
Our contributions. In summary, we make three main contributions:

1. LiLi (Linux in Linux). We present LiLi, a framework that enables emula-
tion and fuzzing of selected parts of custom Android kernels such as device
drivers.

2. Fuzzing emulated drivers. We emulate and fuzz drivers from 10 different
custom Android kernels.

3. Discovery of zero-day vulnerabilities. We discover 4 zero-day vulnera-
bilities, all of which were confirmed by Google’s Android security team.

2 Linux kernel is developed under GPL which in theory requires OEMs to publish their
source code. In practice it remains a grey area especially when it comes to kernel
modules and device drivers, many of which, in fact, come in binary form only.

3 Lineage operating systems are custom modifications of existing kernels from other
vendors. In this project, we look at four Lineage kernels based on Google, Huawei,
Fairphone, and BQ kernels.
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2 Background

Executable and linkable format (ELF). The executable and linkable format
(ELF) is the standard file format for executable and relocatable object files for
a number of Unix-based systems including Linux and Android. Linux kernel
binaries themselves (e.g., vmlinux), as well as any drivers inserted at run-time,
i.e., loadable kernel modules, follow this format. There are two main types of
metadata that are of particular interest to us, namely symbols and relocations.
We also refer to a third type, sections, which are contiguous parts of the binary
that serve some common purpose (e.g., there is a “.text” section for code, a
“.rodata” section for read-only data, etc.).

An ELF symbol provides a reference to some part of a binary. It can be
thought of as a structure that holds information about a function or data object
(e.g., a variable). These symbols are stored in the .symtab section. Examples of
the information stored in these structures are: (1) Section index : the ELF section
that this symbol belongs to; (2) Value: typically the offset of the symbol relative
to its section, but can also be a CRC checksum; (3) Binding : the visibility of the
symbol, typically denoted as either “local” if the scope of the symbol is limited
to a single file, or “global” if it can be made available to other files during linking;
(4) Symbol name: points to the symbol name in the string table section. A symbol
may belong to undefined category (in which case the section index and offset are
undefined). These are symbols that have been referenced in a compilation unit,
but which have not been defined by this compilation unit. They are resolved
once the value of a symbol is known (e.g., during linking process).

ELF relocation entries are added to a compilation unit by the compiler to
keep track of instructions that reference symbols whose location is either yet
unknown (i.e., undefined symbols) or might change. For instance, a loadable
kernel module might have a branch instruction (call or bl) to kernel-defined
printk. But during compilation, the actual address of printk is not yet known
to the module (and might even be different for different target kernels). For
this, ELF binaries include a relocation entry in a dedicated ELF section that
signals to the kernel module loading subsystem that this instruction’s target
address should be patched/replaced by the actual address. Each relocation entry
contains information such as: (1) Offset : the location where a relocation needs to
be performed; (2) Info: contains both the index of the symbol referred to (such as
for our object in the example above), and the type of relocation; (3) Addend : the
offset from the relevant symbol that we are interested in (e.g., we might need the
address of a field of a structure, rather than of the structure itself). The kernel (or
program loader) then uses relocation and symbol entries to dynamically patch
each instruction to point to the correct destination.

We use relocations to connect the injected and the emulated kernels together
by adding new relocation entries.

Loadable kernel modules (LKMs). A device driver can either be compiled as
a constituent part of the kernel and is therefore automatically initialized at boot-
time; or be compiled as an LKM, i.e., a separate ELF binary (usually having
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.ko filename extension) that can be loaded and removed from the kernel at
run-time. LKMs designate their initialization routine via a pointer stored in the
.gnu.linkonce.this_module section. LiLi makes use of LKM kernel subsystem
to inject one Android kernel into another kernel. To specify the precise location
in the injected kernel that we wish to redirect execution to, we take advantage
of the initialization pointer.

The evasion kernel. The evasion kernel is a part of the EASIER frame-
work [11], an ex-vivo dynamic analysis framework for Android device drivers.
It is a modified version of a stock Vanilla Linux kernel that allows one to in-
sert LKMs that were compiled for arbitrary Android host kernels. The EASIER
framework provides a way to generate simplistic models for missing peripherals
from the code itself with sufficiently good success rate. In this work, we use
EASIER to generate hardware models for a small number of missing peripherals
that are expected by the code compartments that we test. We note however that
the Evasion kernel can be replaced by developing simplified hardware models of
the required peripherals either manually or using another similar tool.

vmlinux. When compiling a kernel, the compiler starts by individually com-
piling the various source files it contains into separate object files. These object
files are then linked together into a single object file, namely vmlinux.o. Then,
vmlinux.o is statically linked to produce vmlinux, which is then compressed and
combined with decompressing code to produce a bootable kernel image: zImage
(or bzImage). Therefore, vmlinux is effectively an uncompressed version of the
the bootable kernel image (minus the booting metadata).

3 Overview

If it was possible to emulate Android kernels as a whole with off-the-self emula-
tors, running driver code would not be an issue either. Unfortunately, the vast
majority of Android kernels will not boot in an emulator. This motivates the
high-level goal of LiLi: if we cannot boot a complete kernel in an emulator, is
it still possible to emulate its isolated parts, e.g., built-in device drivers? One
of the first (and näıve) alternative approaches would be to simply copy the An-
droid kernel binary under test into an emulated memory space, set the program
counter to the first instruction of the function that we want to emulate (e.g.,
driver’s entry function), and start to execute instruction by instruction, until we
reach the end of the function. Such an approach might be valid, but only for
very simple and, most importantly, self-contained code, which is not the case for
the majority of drivers.

To better understand the problem, consider the code snippet in Listing 1.1.
This code illustrates four different categories of problems with the näıve approach
above. The code consists of two functions: a) module_init(), which is supposed
to be called by the kernel when the driver is loaded, and b) driver_probe(),
which is supposed to be called by the kernel once the driver is registered and the
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device is detected. Assume we set the instruction pointer at the first instruction
of module_init() and start emulated execution.
Uninitialized pointers. When the execution reaches line 7, it tries to ac-
cess global pointer current4. This pointer is defined/initialized outside of the
module_init() function (and outside of the driver code), and, thus, will remain
uninitialized for our näıve emulation. As a result, when module_init() tries to
dereference it, a segmentation fault will occur. Moreover, the structure pointed
by current contains a number of other pointers. With a large number of kernel-
defined pointers, identifying all of them and manually setting them to correct
values is not feasible.
Uninitialized global variables in standard kernel API. A related problem
happens when the driver code tries to use standard kernel API functions in line 9,
for example the vmalloc() memory allocation routine. Internally, this routine
uses the totalram_pages5 global variable to find where to allocate new memory.
This global variable is supposed to be initialized during kernel boot; otherwise
the behavior of vmalloc() would be undefined.
Unmapped memory. Another problem arises when the code tries to map
physical pages (line 13). Usually the kernel maps all physical memory at a specific
(virtual memory) offset (conventionally called linear mapping) early in the boot
process. On many architectures, a call to kmap() will return the corresponding
address from this mapping. If physical memory memory was not mapped (which
is the case for the code snippet in Listing 1.1), the pointer dereference in line 14
will result in an unmapped memory exception.

1 s t a t i c s t r u c t p l a t f o rm dr i v e r ex p l a f o rm dr i v e r = {
2 . probe = dr iver probe ,
3 . . .
4 }
5 in t modu le in i t ( ) {
6 . . .
7 s t r u c t f i l e s s t r u c t ∗ f i l e s = current−> f i l e s ; /∗ problem 1 ∗/
8 . . .
9 data = vmalloc (PAGE SIZE) ; /∗ problem 2 ∗/

10 . . .
11 s t ru c t page ∗p ;
12 . . .
13 v = kmap(p) ; /∗ problem 3 ∗/
14 ∗( i n t ∗)v = 42 ;
15 . . .
16 p l a t f o rm d r i v e r r e g i s t e r (& ex p l a f o rm dr i v e r ) ; /∗ problem 4 ∗/
17 . . .
18 }
19
20 in t d r i v e r p robe ( ) { . . . }

Listing 1.1. Difficulties with näıve approach to emulation.

Asynchronous function calls. Properly initializing all required memory might
be difficult even within the scope of one driver. This is because some functions
are intended to be called by the kernel asynchronously. In line 16, the code calls
platform_driver_register, which registers callback function driver_probe

with the kernel. It is then up to the kernel to call this callback at an appropriate
time. The driver itself never calls this function. This usually will leave a subset

4 The current pointer refers to the user process currently executing. During the exe-
cution, for example (but not limited to) of a system call, the current process is the
one that invoked the call. Kernel code can get process-specific information by using
it [13]. On arm64 architecture, it is stored in the sp_el0 machine-specific register.

5 Defined in mm/page_alloc.c.
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of driver-defined variables uninitialized, causing problems similar to those in the
previous cases.

In this paper, we use the term execution context to denote all variables/struc-
tures that the driver (or isolated code portion) under test might need/use during
the execution. The execution context must be initialized to proper values so that
the emulated execution is identical to the execution on the physical device. Only
in this case can we reason about code’s security proprieties. We also note that
these types of problems are not specific to kernel emulation, but applicable, to
varying extent, to other types of code too (e.g., userspace programs).

The goal of LiLi is, thus, to reconstruct and provide a valid execution context
for an isolated part of Android kernel code (in this paper, to a built-in Android
device driver). Our key observation is that custom Android kernels and the stock
Linux kernel share most of the core subsystems, and, thus, the execution context
maintained by the stock Linux kernel (which can be booted and emulated) might
be close enough to the execution context expected by Android kernel drivers.
We refer to the stock Linux kernel that will provide the execution context as
the donor kernel, the code/driver that we would like to test and that does not
initially have an execution context as orphan code, and the kernel to which the
orphan code originally belongs as the original kernel.

Fig. 1. Overview of LiLi: attaching orphan code to donor’s execution context

LiLi’s task is, through a series of transformations, to make the orphan code
assimilate the execution context provided by the donor kernel. The overview of
this process is shown in Figure 1. At the beginning (Step a), the orphan code
is attached to the original kernel through a series of links; they connect it to
the original kernel’s (uninitialized) data structures and functions that operate
on these structures. Thus, at Step b, LiLi cuts these original connections by
replacing all references to these structures and functions with undefined symbols.

LiLi then reattaches (re-links) the orphan code to the donor Linux kernel
at Step c. This is done in two sub-stages: first by adding new relocation entries
that are specifically crafted to point to the donor’s kernel code, and, during
the second sub-stage, transforming the original kernel binary (that includes the
orphan code) to a loadable kernel module. When this surrogate module is loaded
into the donor kernel during the next steps, the donor kernel’s module loading
subsystem is forced, by the new relocations, to reattach the orphan code to
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itself. During this step, it might happen that the orphan code depends on a
small number of functions/subsystems for which there are no alternatives in the
donor kernel. In this case, we can redirect such calls to stub functions that return
immediately (effectively skipping such calls). For references to data objects that
have no alternatives in the donor kernel, LiLi refers to the objects from the
original kernel, because either the object does not need to be initialized and
everything works as intended, or it does need to be initialized, in which case the
issues that arise are no different than if we had stubbed the object. Here, these
objects are also recursively detached from the original kernel and reattached to
the donor kernel, similar to the orphan code (e.g., if this objects stores a pointer
to printk).

During Step c, we also need to make the donor kernel compatible with the
orphan code as much as possible. For this, we align the donor’s kernel-driver
API to match the original kernel through its configuration. Once this is done,
as the last step (Step d), LiLi instructs the donor kernel to pivot the execution
to the code under test by adding a function pointer to a specific section in the
surrogate module.

We finally proceed by booting the Linux donor kernel in Qemu, which creates
the proper execution context. We then insert the original kernel transformed into
a surrogate module (with includes the orphan code) into the donor kernel. We
can then proceed to fuzzing the driver. More specifically, we focus on IOCTL
system calls. For this step we chose to use syzkaller, but any other kernel fuzzer
would work too.

4 Implementation

LiLi’s goal is to make the orphan (driver) code run within the donor kernel’s
execution context. For this it first needs to be disconnected from the original
kernel. The orphan code is functionally connected to its original kernel through
the use of API calls6 (e.g., printk or vmalloc) and global data structures (e.g.,
init_mm). To cut these connections we need to: (a) precisely locate the code and
data that belongs to the driver (which will effectively define the border between
the driver and the original kernel); (b) find all instructions and data within the
driver code that reference functions/data outside of the driver code. In practical
terms, cutting connections and reattaching them to the donor kernel means
patching these instructions/data (in our specific implementation, the patching
happens dynamically, i.e., when the donor kernel runs in the emulator).

4.1 Locating driver’s code and data in the original kernel binary

The original kernel’s vmlinux contains a symbol table7, and some of the symbol
entries will naturally belong to the driver code. These entries, in turn, will contain

6 More precisely, ones exported by the original kernel functions and variables.
7 For stripped kernel binaries which don’t have the corresponding ELF section, we can
still extract the symbol table: the kernel stores it internally as it needs it at run-time.
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the offsets and sizes of vmlinux parts that store the driver’s code and data. Our
goal for this subsection is, thus, to identify these symbols.

In order to find the driver’s symbols, we consider two main types: local and
non-local. Each type of symbol will require a different approach.
Local symbols. For local symbols, we refer to symbols that have a binding of
”LOCAL”. These symbols represent functions and variables that are limited only
to the scope of the file that defines them (e.g., static functions). When compiling
a C file, the GCC compiler will normally place all these local symbols together
in the symbol table right after a debugging symbol of type ”FILE” whose name
is the name of the compiled source file. When linking multiple .o files together,
the GNU linker will place these groups of local symbols sequentially in the new
symbol table, each group still preceded by the corresponding ”FILE” symbol.
Thus, we can search the symbol table for everything between the FILE symbol
with a source file’s name and the next FILE symbol. More specifically, we take
all such symbol table entries for symbols that have non-zero size (to remove
debugging symbols).
Non-local symbols. As for non-local symbols (i.e., symbols with ”GLOBAL”
and ”WEAK” bindings), the challenge is that they are necessarily listed after all
the LOCAL symbols in the symbol table, without a nearby symbol that identifies
the source file that defines them (like the aforementioned FILE symbols). We
must instead directly scan the source file itself to recover the names of these
global symbols (via ctags). For each of these symbols, we then scan the vmlinux
symbol table for the GLOBAL symbol with the same name (or WEAK symbol
if the function has the ”__weak” descriptor). We use the driver source code for
the sole purpose of identifying function names and names of .c files. We never
need to compile the driver, nor analyze its functions’ bodies, and the code that
we test during fuzzing comes directly from the kernel binary image. We discuss
an alternative approach in Section 6.
Variable declarations behind preprocessing macros. Some variable dec-
larations can be hidden behind macros which makes it more difficult to identify
them without using a C preprocessor. To get around this, if we have a GLOBAL
object symbol that is not a part of the list of driver symbols, we search the donor
kernel’s System.map file to find if that symbol exists there, and if it does not,
we assume that this symbol should have been declared by the driver.

4.2 Instructions of interest

At this point, we have categorized all the symbols in the original kernel’s vmlinux
into those that belong to the driver, and those that do not. Moreover, from these
symbols we also have located vmlinux segments8 that contain the driver’s code
Ȯur next task is to scan these segments for instructions that reference code and
data outside of the driver. These will be the very connections that we cut later.

There are two types of instructions which are of interest to us: (a) branch in-
structions that call a function outside of the driver; (b) sequences of instructions
that access data outside of the driver. Recovering the destination of a branch

8 We mean contiguous parts of the binary here, not ELF program segments.
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(e.g., bl) is relatively straightforward by looking at its argument9. We check if
this destination address points to outside of the driver code, and if this is the
case, we save the location of this instruction for future use. We also resolve its
destination address to a symbol (e.g., printk) and save it too (saving the symbol
name is important as it will be used to reattach the driver to the donor kernel).

Finding places where the driver accesses data objects external to the driver
is more complicated. Unlike function calls where a single bl instruction immedi-
ately gives us the destination, access to data objects involves more than one in-
struction. By using the reference manual for ARMv8 we narrowed down two pairs
of instructions that can cross page boundaries10 for data access: (adrp; add),
and (adrp; ldr) (note that these instructions are always paired). The argu-
ment to adrp instruction gives us the page for the object, and the argument to
either add or ldr gives us the offset of the object in this page. We, thus, find
the relative (to PC) destination address of data object as

(adrp_dest << 12 + add_dest) or

(adrp_dest << 12 + ldr_offset)

depending on which pair of instructions was used11. For example, the code might
contain the following instructions: (adrp x0, n_pages; add x0, offset) or,
alternatively, (adrp x0, n_pages; ldr x1, [x0, offset]); the object address
will be computed as (pc + n_pages << 12 + offset)

One of the difficulties that required a bit more sophisticated analysis is that
these pairs of instructions are non-atomic, i.e., the two instructions in a pair
can be interspersed by another unrelated instruction. Moreover, different pairs
can even overlap. To tackle this problem, we use a list to keep track of unpaired
adrp instructions, to then compare the registers used by subsequent add and ldr

instruction with those of the adrp’s in the list. If the registers match, then the
two destinations are added to obtain the precise destination of that pair (and
the adrp can be removed from the list). We then resolve these destinations to
specific symbols using the symbol table.

Finally, similarly to branch instructions, we save for future use the locations of
(adrp;add)/(adrp;ldr) pairs together with the symbol names they reference.

4.3 Data of interest

While the original kernel’s vmlinux is statically linked, it still contains reloca-
tions that patch data objects if the CONFIG_RELOCATABLE configuration option
is enabled (e.g., for KASLR to shift objects in memory), which was always the
case for all the kernels under test.

9 There is the case of indirect calls, such as bl x0, but these are usually used to
reference the code in the driver itself. This was also the case in all our experiments.

10 Accesses within page boundaries will point back to the driver. No re-linking is re-
quired in this case.

11 The destination address computed in this way may fall in the middle of a data object.
While it was never the case in our experiments, one can use symbol start address
and symbol size to find if an address falls within the boundaries of a data object.
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LiLi therefore recreates these relocations in the surrogate module. Each such
original relocation in vmlinux references an absolute address. We thus first search
for the symbol corresponding to this address in vmlinux’s symbol table. LiLi
then creates a relocation with the object’s address and the found symbol. If
CONFIG_RELOCATABLE is disabled (which should not be the case for production
kernels), we can scan the driver’s data section and create new relocations for
each address that points to a symbol.

4.4 Re-linking

At this point, we should have a table that contains information about all con-
nections (links) from the driver to the original kernel: for both functions and
data objects. This table has the following format (link type, [from]:instr address,
[to]:destination symbol), where link type is either func or data_object, in-
str address is the address of an instruction in the driver that references the
original kernel, and destination symbol is the name of the specific symbol that
this instruction references. This table, in fact, can be seen as a restored simplistic
and abbreviated version of the relocation table that was used (and discarded)
when vmlinux itself was compiled and linked.

Now, equipped with this recovered relocation table, we can correctly discon-
nect the driver from the original kernel and reattach (re-link) it to the donor
kernel. There are two ways to achieve this: we can either re-link the driver stat-
ically by rewriting the donor kernel binary, or we can do it dynamically (i.e.,
during donor kernel’s runtime). In our implementation, we use a dynamic ap-
proach: ideally we would want to avoid any modifications to the donor kernel so
that our approach is as generic as possible regarding kernel versions. But more
importantly, the Linux kernel, at its very core, already has a way to accommo-
date additional code dynamically via the loadable kernel module subsystem; we
are going to hijack this functionality.

From a high level, we transform the original kernel (together with the driver)
into a loadable kernel module compatible with the donor kernel. We call the
resulting module surrogate module. During this transformation, we incorporate
the recovered relocation table into this new module. We then let the donor kernel
do the rest: when we load the surrogate module, the donor kernel is forced
by the added relocation entries to patch all necessary instructions, effectively
reattaching the driver to itself. In the rest of this section, we will provide more
technical details regarding our implementation.

Initializing surrogate module. We start by generating a simple C file that
contains basic, minimally required ELF sections needed in a kernel module (e.g.,
.modinfo) and compiling it into a .ko file. LiLi then extracts the entirety of the
original kernel’s vmlinux image, debugging sections aside, and copies it into this
file’s .text section.

The reason we copy parts that may not be necessary for our particular driver
is that all the code in vmlinux is statically linked and is position-independent
(i.e., PC-relative), meaning that we will need to maintain the same offsets be-
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tween instructions and their destinations. Moreover, it is important that the
whole binary goes into one section, because otherwise upon module insertion,
separate ELF sections may be loaded into different memory regions in the ker-
nel, potentially causing the relative offsets used by the instructions to point to
unintended destinations. Note that copying the entire vmlinux image like this,
while formally preserving existing symbol and relocation tables in the output
file, effectively disables them for kernel loading subsystems (as they are now
residing in one single section together with everything else).

Adding symbols and relocations. Once we have the skeleton ELF file for
the surrogate module, we can start adding symbols and relocations from our
recovered simplistic relocation table. This procedure consists of two sub-steps.
First, LiLi adds a new empty symbol section, and for each entry in the table,
creates a new symbol entry with the same name but UNDEF as the value in case
this name is present in the donor kernel. This will instruct the donor kernel
that these symbols should be resolved, and it will resolve them to the donor
kernel’s version of these symbols. During the second sub-step, LiLi recreates
the actual relocation table from our simplistic table, using the same values for
the instruction address and symbol name. Once added, this should instruct the
donor kernel to patch the corresponding instructions and point them to its own
symbols.

This procedure with adding symbols and relocations effectively prepares the
driver to be unlinked from the original kernel and linked to the donor kernel. In
our experiments, this address resolution technique always worked correctly.

Driver entry points. As the last step, we need to: (a) identify the driver’s
entry/initialization functions, and (b) make the donor kernel jump to these func-
tions. We first note that all initialization functions are prefixed by ”__initcall_”
in vmlinux’s symbol table at compile time. Moreover, depending on the intended
call order, a different suffix is appended to the function’s name by the compiler
(suffix of 1 means it’s called before ones with 1s, which are before 2, which are
before 2s, etc). Thus, by looking for the __initcall_ prefix among the driver’s
LOCAL symbols, we can recover the names of the driver’s initialization func-
tions . Then, by looking at the suffixes of these symbol names, we can recover
the order in which these functions should be called.

In order to solve (b), we note that when loading a module, the kernel LKM
subsystem looks at the module’s .gnu.linkonce.this_module section at a
particular offset, where it expects to find a pointer to the initialization func-
tion; we use this feature to finally redirect execution to the driver. In order
to accommodate multiple initialization functions using a single available slot in
.gnu.linkonce.this_module, we create a trampoline code that calls each of
the built-in driver’s initialization functions in the correct order. We inject this
trampoline at the beginning of the surrogate module’s .text section (since there
is only irrelevant system code there anyways). We then add a relocation entry in
.rela.gnu.linkonce.this_module that refers to the trampoline. This ensures
that all the initialization functions are called at load-time.
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5 Evaluation

In this section, we evaluate two aspects of LiLi. First, we check if LiLi can
correctly unlink a built-in driver from its original kernel and then re-link it to
the donor kernel. Second, we test if the re-linked drivers can: (a) run in the
context of the donor kernel, and (b) be fuzzed. More importantly, we test if LiLi
can be used to find new bugs, with our primary focus on IOCTL handlers.

For emulation and fuzzing, we use three components external to LiLi: Qemu
as the emulator; the evasion kernel from the EASIER framework as the donor
kernel; and syzkaller as the fuzzer. The reason for choosing the evasion kernel
as the donor kernel is that Android drivers often require a specific peripheral.
Without an emulated version of these peripherals (usually not implemented by
Qemu), achieving acceptable code coverage is difficult. The EASIER framework
can be used to substitute the missing peripherals with simplistic models derived
from the driver code itself. This allows us to test LiLi without implementing
emulated versions of the hardware. We also extended the evasion framework
to accommodate more types of drivers. More specifically, we added support for
I2C drivers in addition to platform drivers provided by EASIER. Finally, we
extended EASIER’s evasion kernel by porting several Android subsystems, thus,
extending the set of drivers that EASIER can handle even further.

5.1 Experimental dataset

In order to test LiLi’s re-linking capabilities, we use 56 different IOCTL drivers
from 10 different Android kernels: Samsung (Galaxy S9, Galaxy Note 9), Huawei
(P20 Pro, Mate 10 Pro), HTC (Exodus, U12+) and Lineage (Fairphone sdm632,
Xiaomi msm8937, Bq msm8953, Amlogic). As in this paper we focus on Android,
we also verified that these drivers were not simultaneously a part of the vanilla
Linux kernel.

For emulation and fuzzing experiments, we use 23 drivers from the same
kernels. This is due to limitations of the EASIER framework to create emulated
versions of the peripherals in all cases (indeed, this not a limitation of LiLi itself).
See Appendix C for the list of drivers, and whether we were able to obtain a
device models for each of them.

5.2 LiLi’s correctness

In order to test LiLi’s correctness in unlinking and re-linking built-in device
drivers, we need to first verify that it fully recovers and restores all the relo-
cations, and second, that it can be loaded to the donor kernel. To do that, we
first notice that during normal driver compilation, the kernel build system, be-
fore creating the final vmlinux file, compiles each driver/subsystem separately,
producing a built-in.o file. This intermediate file contains all the relocations
that would be further used (and discarded) by the building system to link it to
vmlinux. As we had access to the source code of the original kernels, we could
use builtin.o files for each of the drivers to get their relocation and symbol
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tables12. We then check if they match the relocations and symbols reconstructed
and extracted from vmlinux by LiLi.

Following this methodology, we verified that the relocation and symbol ta-
bles were correctly recovered by LiLi and were similar between the surrogate
module and the corresponding built-in.o for all 56 drivers. In all these cases, the
generated surrogate modules were accepted by the donor (evasion) kernel.

5.3 Fuzzing results and analysis

All our fuzzing tests were performed on arm64 c7g.metal AWS EC2 instances
running Ubuntu 20.04 with 128 GiB of RAM. For instrumentation and address
sanitizing, we use KCOV and KASAN, respectively. Table 1 summarizes these ex-
periments. For each driver, the table shows its size, the amount of time it was
fuzzed, code coverage, and the number of unique crashes. Each driver was fuzzed
for the duration of 3 to 4.5 hours with the average of 1,134 covered blocks per
driver (as reported by syzkaller). Based on the code coverage, and the fact that
these drivers extensively use the kernel API, we conclude that all the drivers
under test were able to successfully use the donor kernel’s execution context.
We further categorize the drivers into three groups based on type and number
of crashes.

Group 1. This group includes drivers 1 through 11 in Table 1 (i.e., 48% of
drivers). Fuzzing them resulted in discovering 4 zero day vulnerabilities. All
these drivers produced sufficient code coverage without any false positives, i.e.,
they could be analyzed precisely. This also indicates that LiLi can be used to
find new bugs.

Group 2. Drivers from the second group (12 to 17) resulted in a small number
of unique crashes. However, we were not able to identify the exact cause of these
crashes through additional manual analysis, and we thus classified them as false
positives13.

Group 3. The third group includes drivers from 18 to 23 which produced several
false positive crashes. Drivers from this group internally use the msm Android
subsystem which LiLi also re-linked to the evasion kernel. Upon manual analysis,
we found that msm subsystem recursively depended on yet another subsystem
not present in the donor kernel. In this case, our prototype of LiLi redirected all
calls to that subsystem with function stubs. This means that the drivers from
group 3 were operating under only partially recovered execution context. We
note however that even in this case, we had only a handful of false positives,
and moreover, the drivers from this group achieved reasonable code coverage.
One solution to this problem would be to recursively re-link all Android kernel
subsystems used by the driver instead of using a fixed depth level (2 in our case).

12 We note that these object files were used only to obtain the ground truth about
correct relocations; LiLi does not require these object files.

13 We believe however that some of these crashes were caused by actual vulnerabilities.
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Table 1. Fuzzing Results.

# Driver Kernel LOC
Fuzzing Statistics

CPU-hours Cov Crashes

1 meson ion delay alloc Lineage Amlogic 500 219 1425 1
2 ionvideo Lineage Amlogic 1566 194 2453 2
3 amaudio2 Lineage Amlogic 1465 197 1261 1
4 anc hs Huawei P20 Pro 1080 293 802 0
5 hicam buf Huawei Mate 10 630 194 1158 0
6 efuse64 Lineage Amlogic 879 196 1205 0
7 meson uvm allocator Lineage Amlogic 395 196 1127 0
8 vout2 mod Lineage Amlogic 1721 196 1148 0
9 vout mod Lineage Amlogic 1744 193 1144 0
10 cvbs out Lineage Amlogic 1881 198 1272 0
11 hbtp input Lineage BQ 1387 213 1809 0
12 dolby fw Lineage Amlogic 540 253 1124 3
13 audio data Lineage Amlogic 224 203 814 2
14 video composer Lineage Amlogic 2544 199 1222 1
15 sensors ssc Lineage Xiaomi 356 205 1417 1
16 anc hs default Huawei P20 Pro 156 264 1426 1
17 maxim Huawei P20 Pro 879 198 1182 2
18 msm ispif Lineage Xiaomi 1832 194 593 4
19 msm ispif 32 Lineage Xiaomi 1326 193 859 3
20 msm csiphy Lineage Xiaomi 2355 292 598 3
21 msm csid Lineage Xiaomi 1153 195 594 3
22 msm flash Lineage Xiaomi 1207 267 593 3
23 msm ir led Lineage BQ 360 213 861 4
CPU-hours = fuzzing time * 64 (the number of cores used)
Cov = total number of basic blocks of kernel code reached

5.4 Discovered vulnerabilities

The four previously unreported bugs were found in the Lineage Amlogic kernel14.
Given that the Lineage Amlogic kernel is based on Android TV kernels, we
have reported these bugs to Google’s Android Security Team, and they were all
confirmed. In Table 2, we provide the type of vulnerabilities and Google’s severity
assignment. We provide more technical details about each of the vulnerabilities
in Appendix A.

6 Limitations

In our implementation, in order for LiLi to identify the driver’s symbols, it needs
to find the names of its functions and data objects. Currently, this is done by

14 Three of these were found directly through the fuzzing experiments, and one was
found upon manual code inspection of a driver that contained one of the other three
bugs.
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Table 2. Newly Discovered Vulnerabilities

Driver Vulnerability Type Severity

meson_ion_delay_alloc Double free High
meson_ion_delay_alloc Memory leak High
ionvideo Arbitrary write Moderate
amaudio2 Null ptr dereference N/A

scanning the orphan code’s source files, but we only need function declarations,
and there is no requirement to parse function bodies, nor compile the files. An
alternative approach that we can use is to recover function names directly from
the vmlinux binary. To do this, we start with a single function name, e.g., the
ioctl handler that we want to analyze. As a local function symbol, it should fall
between two FILE symbols in the symbol table. Taking all entries between these
two FILE symbols allows us to obtain the remaining local symbols that belong
to the driver. In order to find all of the driver’s global symbols, we analyze all
call sites in vmlinux that either belong to this initial set or jump to this set. We
then update our initial list of symbols (and filter out standard kernel API) by
recursively repeating the same procedure on this updated set.

7 Conclusion

In this paper, we approached the problem of emulating arbitrary Android kernel
images, the majority of which are not supported by existing emulators. We pro-
posed LiLi, a tool that can be used to disconnect isolated parts of an Android
kernel image, such as built-in drivers, and to re-link them to a version of the
Linux kernel that can be emulated. We applied LiLi to a collection of Android
kernel drivers from various vendors, which allowed us to fuzz test them. Fol-
lowing an analysis of the results of these experiments, we discovered 4 zero-day
vulnerabilities, all of which were confirmed by the manufacturer (Google).

We believe the approach implemented by LiLi can be used to simplify dy-
namic analysis of various parts of custom Android kernels which can otherwise
be difficult to test, making the dynamic analysis of the Android kernel more ac-
cessible. To this end, we make LiLi available as open-source on Github15, where
we also provide extended experimental results.
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Double free. Driver meson_ion_delay_alloc defines IOCTL UVM_IOC_ALLOC.
Here, it calls uvm_alloc_buffer, which allocates a uvm_buffer based on data
passed through the IOCTL’s arg parameter, and stores a pointer to the buffer
in a dma_buf. This same function then tries to give the dma_buf a file de-
scriptor fd, and if this fails, it then kfree’s the uvm_buffer. However, the
dma_buf’s reference count will also be dropped, causing the release function
meson_uvm_release to be called, where the dma_buf’s uvm_buffer is once again
kfree’d. Hence, we have a pointer that is double freed, which produces undefined
behaviour. One way to reliably cause the fd registration to fail is to repeatedly
call UVM_IOC_ALLOC. This will register dma_buf’s over and over, until the maxi-
mum number of given fd’s has been reached.
Memory leak. Command UVM_IOC_ALLOC from driver meson_ion_delay_alloc
allocates a uvm_buffer based on data passed through the IOCTL’s arg parame-
ter. If another driver has the file descriptor for this buffer (e.g., if a user-space pro-
gram is interacting with both drivers), then it can call dma_buf_map_attachment
on this buffer, which will eventually call meson_uvm_alloc_buffer. This uses
ion_alloc, which allocates a buffer inside memory pools belonging to the ion

subsystem, based on data in the uvm_buffer. This includes the buffer’s size,
which it takes from a field in the uvm_buffer allocated as a result of the
UVM_IOC_ALLOC IOCTL. Since the meson driver does not contain any checks
for this buffer size provided by the user-space, this means that an application
interacting with these two drivers could create buffers of arbitrary size in the
ion memory pools, potentially draining them and denying other processes from
using these pools. Note that this would not normally be found by fuzzing, as its
exploitation requires a fair amount of set-up (e.g., there needs to be a custom
driver on top of the meson driver).
Arbitrary write. The ionvideo driver defines IOCTL vidioc_qbuf, which
takes as input a pointer p to a v4l2_buffer. Then, the vidioc_qbuf function
writes to an array at index p->index, but without first validating the value
of p->index. Since the contents of the v4l2_buffer that p points to are user-
provided, a user could control the write address of this particular operation.
Null ptr deref. The amaudio driver creates multiple dev files at insertion time
(amaudio2_out, amaudio2_in, etc). Several of these files use the same IOCTL
handler, wherein some commands call mutex_lock on amaudio->sw.lock and
amaudio->hw.lock. However, these locks are only initialized via mutex_init

in the open function if the file being opened is amaudio2_out. Thus, invoking
IOCTLs that lock these locks with other dev files that use the same IOCTL
handler (e.g., amaudio2_in) will result in an attempt to lock an uninitialized
lock, ultimately causing a null pointer dereference.

B Related Works

Given the variety of challenges surrounding dynamic analysis techniques, in
many cases, researchers limit the scope of their work to a single type of driver.
vUSBf [14], which provides a framework that increases the performance of USB
device driver fuzzing, by using the USB redirection protocol to communicate

18



with these devices in virtual environments (with virtualization enabled). Simi-
larly, POTUS [9] also enables the fuzzing of USB drivers in virtual machines,
but allows for emulation of arbitrary USB devices as well, improving ease of
use. Peng and Payer [10] would later propose a similar tool, but this time with
a lesser reliance on symbolic execution, mitigating the associated overhead and
scalability issues. Another popular area of focus is the kernel’s WiFi drivers and
devices. Some approaches will emulate certain WiFi devices in order to fuzz
drivers that use these devices (e.g., Keil and Kolbitsch [6], with IEEE 802.11
devices), typically with the goal of finding vulnerabilities in the syscall interface.
In contrast, PeriScope [15] explores the hardware-OS boundary by monitoring
the two primary types of read accesses (MMIO and DMA) issued by drivers to
their devices, and injecting fuzzed values whenever such a read is encountered.
Overall, these techniques perform well in their niche, however, they naturally
lack the breadth that we aim for.

There are also more generalized tools that allow for the automated analysis
of the Linux kernel and its drivers. For instance, Charm [17] runs the device
driver in a virtual machine, and provides a way for that driver to communi-
cate with physical devices. It achieves this by redirecting I/O calls issued by the
driver through a customized USB channel. SURROGATES [7] and AVATAR
[18] offer similar functionality, but for embedded systems. These techniques opt
to redirect I/O accesses to physical devices using FPGA bridges and the JTAG
debugger backend, respectively. All of these approaches take an additional step
toward complete driver emulation, but they still rely on the presence of phys-
ical hardware, which can be expensive and difficult to acquire. Moreover, even
with the problem of hardware being resolved, there are still some challenges on
the software side. This is especially evident in the case of Charm, which deals
with kernel drivers. In order to resolve all the associated software dependencies,
the authors mention that an experienced security analyst would normally take
several days to port a driver to a custom kernel that can be emulated.

One prevalent solution to the problem of missing peripherals is the use of
symbolic execution. For instance, SymDrive [12] allows for the creation of sym-
bolic devices that specialized instrumented x86 Linux kernel drivers can interact
with. This is done with the help of the S2E [4] platform, which can be used
to symbolically execute an entire operating system’s stack. Another example
is FIE [5], which can be used to detect vulnerabilities in MSP430 microcon-
troller firmware. It uses the KLEE [3] symbolic execution engine, and intercepts
a driver’s accesses to memory-mapped registers (used for hardware interaction),
returning custom symbolic values provided by FIE. In a similar way to PeriScope
(sans the symbolic execution), FIE is therefore able to execute a driver without
the presence of its corresponding devices. This technique only targets simple
firmware programs relevant to MSP430 microcontrollers, meaning there is no
guarantee that a similar technique could be used for the analysis of more com-
plex drivers. More generally, symbolic execution techniques tend to suffer from
slowness caused by the constraint solving problem, as well as path explosion
issues. Moreover, in order to find bugs, custom checkers need to be used to solve
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the constraints produced as output of symbolic execution. Different kinds of bugs
will require different checkers, and writing these takes time and experience.

Other techniques (e.g., [16, 8, 2]) opt for a static approach to vulnerability
detection. The advantage of static approaches is that they allow to entirely
bypass the challenge of code execution. However, getting false positives is a flaw
that is universal across static analysis techniques. The more false positives there
are, the more time and expertise is needed to identify real bugs.

Finally, the EASIER framework [11] mitigates some of the challenges of
dynamic analysis (e.g., needing hardware or complex emulation) by resolving
certain hardware and software dependencies, and by taking advantage of its
dynamicity to allow for easy verification of false positives. However, it, like sim-
ilar dynamic techniques, still depends on the insertion of a separately compiled
stand-alone module into an emulator, rather than the insertion of a portion of a
kernel binary. In other words, using it requires access to the source code of the
entire kernel, as well as the ability to compile LKMs against that kernel. Not
only is this not always possible, but it also limits itself to only the emulation of
drivers, as opposed to any other selected part of the kernel.

C Experimental dataset

In Table 3, we include the 56 drivers from our initial testing set. We also indicate
in the DM (Device Model) column those for which the Evasion framework was
able to reconstruct a correct device model. For all these drivers, LiLi was able
to reconstruct the correct relocation table.

Table 3. Experimental dataset

Driver DM Driver DM Driver DM Driver DM

audio
maxim ✓ tfa98xx X anc hs ✓ anc hs default ✓
dolby fw ✓ amaudio2 ✓ audio info ✓ efuse64 ✓
camera
hicam buf ✓ hwcam cfgdev X laser module X msm X
msm csiphy ✓ msm actuator X msm ispif ✓ msm ispif 32 ✓
msm isp X msm sensor driver X msm flash ✓ msm csid ✓
msm eeprom X msm cpp X cam cci dev X msm ir led ✓
msm ir cut X cam eeprom dev X cam flash dev X cam actuator dev X
vm X
video
msm vidc 4l2 X amlvideo2 X picdec X ionvideo ✓
video composer ✓ videotunnel X vout serve ✓ vout2 serve ✓
vbs out ✓ wifi dt X
other
hismart ar X msm rng X sde rotator dev X msm vidc 4l2 X
msm glink pkt X qseecom X qcedev X sensors ssc ✓
radio-iris X mdss rotator X hbtp input ✓ nq-nci X
pn547 X smartcard X aml aucpu X meson ion delay alloc ✓
meson uvm allocator ✓ msm smd pkt X
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